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40 Abstract
41

42 Background: Observational studies have investigated the effect of serum lipids on 

43 kidney function, but these findings are limited by confounding, reverse causation and 

44 have reported conflicting results. Mendelian randomization (MR) studies address this 

45 confounding problem. However, they have been conducted mostly in European ancestry 

46 individuals. We, therefore, set out to investigate the effect of lipid traits on the estimated 

47 glomerular filtration rate (eGFR) based on serum creatinine in individuals of African 

48 ancestry.

49

50 Methods: We used the two-sample and multivariable Mendelian randomization (MVMR) 

51 approaches; in which instrument variables (IVs) for the predictor (lipid traits) were derived 

52 from summary-level data of a meta-analyzed African lipid GWAS (MALG, n=24,215) from 

53 the African Partnership for Chronic Disease Research (APCDR) (n = 13,612) & the Africa 

54 Wits-IN-DEPTH partnership for Genomics studies (AWI-Gen) dataset (n=10,603). The 

55 outcome IV’s were computed from the eGFR summary-level data of African-ancestry 

56 individuals within the Million Veteran Program (n=57,336). A random-effects inverse 

57 variance method was used in our primary analysis, and pleiotropy was adjusted for using 

58 robust and penalized sensitivity testing. The lipid predictors for the MVMR were high-

59 density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and 

60 triglycerides (TG).

61

62 Results: We found a significant causal association between genetically predicted low-

63 density lipoprotein (LDL) cholesterol and eGFR in African ancestry individuals � = 1.1 

64 (95% CI [0.411-1.788]; p=0.002). Similarly, total cholesterol (TC) showed a significant 

65 causal effect on eGFR � = 1.619 (95% CI [0.412-2.826]; p=0.009). However, the IVW 

66 estimate showed that genetically predicted HDL-C � = -0.164, (95% CI = [-1.329-1.00]; p 

67 = 0.782), and TG � = -0.934 (CI = [-2.815-0.947]; p = 0.33) were not significantly causally 

68 associated with the risk of eGFR. In the multivariable analysis inverse-variance weighted 

69 (MVIVW) method, there was evidence for a causal association between LDL and eGFR 

70 � = 1.228 (CI = [0.477-1.979]; p=0.001). A significant causal effect of Triglycerides (TG) 
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71 on eGFR in the MVIVW analysis � = -1.283 (95% CI = [-2.605-0.038]; p=0.057) was 

72 observed as well. HDL showed no evidence of a significant causal association with eGFR 

73 in the MVIVW method (� = -0.117 (95% CI [-1.252-0.018]; p=0.840). We found no 

74 evidence of a reverse causal impact of eGFR on serum lipids. All our sensitivity analyses 

75 indicated no strong evidence of pleiotropy or heterogeneity between our instrumental 

76 variables.

77

78 Interpretation: In this African ancestry population, genetically predicted higher LDL-C 

79 and TC are causally associated with higher eGFR levels, which may suggest that 

80 the relationship between LDL, TC and kidney function may be U-shaped. And as such, 

81 lowering LDL_C does not necessarily improve risk of kidney disease.  This may also imply 

82 the reason why LDL_C is seen to be a poorer predictor of kidney function compared to 

83 HDL.  In addition, this further supports that more work is warranted to confirm the potential 

84 association between lipid traits and risk of kidney disease in individuals of African 

85 Ancestry.
86

87 Keywords: Serum lipids; eGFR; Chronic Kidney Disease; Kidney function; Two-sample 

88 Mendelian Randomization
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103 Introduction
104 Chronic kidney disease (CKD) is defined as a reduction in kidney function indicated by  

105 estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2 or kidney damage 

106 markers or both that persist for at least three months[1]. It has a significant impact 

107 worldwide, with an estimated prevalence of 10-15% globally as a direct cause of mortality, 

108 morbidity, and comorbidity in other complex traits[2]. The prevalence of CKD in Africa is 

109 equally high with most sub-Saharan African countries showing generally a >10% 

110 prevalence. Managing CKD in its advanced stages requires huge amounts of resources, 

111 and this is quite cumbersome on most sub-Saharan Africa (SSA) economies.

112

113 Serum lipids: high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, 

114 rank among the highest commonly measured biomarkers in clinical medicine[3]. Most 

115 epidemiological studies have reported an association between these lipids and kidney 

116 function, indicating that low HDL cholesterol is associated with poor kidney function and 

117 CKD progression[4-6]. In a well-powered study of 2 million United States veterans who 

118 were followed up for a median of 9 years, Bowe et al., [7] reported on the association 

119 between HDL cholesterol concentrations and various CKD end points. The authors 

120 reported individuals with low HDL cholesterol concentrations (<30 mg/dL) have the 

121 highest risk for CKD or CKD progression [5].  Other studies have found that higher levels 

122 of blood total cholesterol (TC), LDL, TC: HDL ratio, TG: HDL ratio, and lower levels of 

123 blood HDL cholesterol, are associated with a higher risk of incident CKD [8]. However, 

124 evidence from these epidemiological and observational studies is limited by its inability to 

125 demonstrate a causal relationship and inconsistencies between several studies [9-12].  

126 Further still, most of such high-powered studies have not only been limited by sample 

127 selection bias towards majorly European ancestries, but also confounding from 

128 environmental factors. 

129

130 Mendelian randomization studies can enable us to conduct causal inferences by dealing 

131 better with environmental confounding and reverse causation[3, 13, 14].[15]. However, 

132 similar to observational studies, the association of serum lipids and eGFR has been 

133 conflicted, even in the MR studies. Studies like that by Coassin et al., indicated that HDL 
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134 cholesterol does not influence eGFR, and they further proposed pleiotropic effects on 

135 eGFR for some of the associated SNPs [8]. Other findings elsewhere conflicted these 

136 findings and reported a genetically higher HDL concentration being associated with higher 

137 eGFR[16, 17]. Such studies, however, have been subject to sample selection bias due to 

138 the lack of ethnic diversity in the Genome-Wide Association Studies (GWASs) used which 

139 are primarily based on European ancestry individuals[18, 19]. A two-sample Mendelian 

140 randomization analysis of data from the most extensive lipid and CKD cohorts supported 

141 genetically higher HDL cholesterol concentration as causally associated with better 

142 kidney function[20].  This analysis and several others were performed on European 

143 ancestry individuals, and the results cannot be confidently generalized to non-European 

144 ancestry individuals. 

145

146 In this study, therefore, we set out to use bi-directional and multivariable MR methods to 

147 investigate the causal relationship between serum lipids profile and kidney function using 

148 estimated glomerular filtration rate based on serum creatinine (eGFRcrea) as a marker 

149 among individuals of African-ancestry selected from the Million veteran program (MVP) 

150 and Meta-analysed of continental African Lipid GWASs (APCDR and AWI-Gen), which 

151 we called MALG (n=24,215).

152

153

154 Methods
155

156 GWAS data sources
157 We selected eGFR instruments from GWAS summary statistics of all individuals of 

158 African ancestry within the U.S. Veteran’s Administration million veteran program, MVP 

159 (N=57336) [21]. Genetic instruments for lipid traits were obtained from summary statistics 

160 of MALG (n=24,215) - 13,612 African-ancestry participants from the African Partnership 

161 for Chronic Disease Research (APCDR) & the Africa Wits-IN-DEPTH partnership for 

162 Genomics studies (AWI-Gen) [22].  More information about the African cohorts (AWI-

163 Gen+APCDR) from which the lipids instrumental variables were obtained are detailed 

164 elsewhere [21-23].  
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165

166 Univariable Mendelian Randomization
167 After instrument harmonization and selection, the inverse-weighted variance (IVW) 

168 method was used to perform the bi-directional MR analysis. In the absence of directional 

169 pleiotropy and heterogeneity between exposure and outcome, the estimates from this 

170 method have been reported to be reasonably accurate [23]. We checked for the possible 

171 presence of horizontal pleiotropy between instrumental variables by including the MR-

172 Egger regression method and MR-PRESSO. Evidence of horizontal pleiotropy was based 

173 on the MR-Egger intercept value deviating significantly from zero with a P-value � 0.05 

174 [23, 24]. The weighted median method was used as the method of choice in case of 

175 observed pleiotropy [25]. 

176

177 Multivariable Mendelian Randomization
178 The Multivariable Mendelian Randomization method can be applied for multiple genetic 

179 instruments regardless of their association with the exposure [26]. In this MVMR method, 

180 the instrumental variables may be associated with more than one risk factor but they must 

181 fulfill the equivalent instrumental-variable assumptions [27]. Thus, we applied this method 

182 by considering all the instrumental variables for HDL, LDL, and TG to determine their 

183 independent effects on eGFR.

184

185 Sensitivity analyses
186 We performed a sensitivity analysis using the penalization method in which the 

187 contribution of some of the instrumental variables (e.g., heterogeneous or outlying IVs) to 

188 the analysis is down-weighted (or penalized) [25]. We performed the systematic leave-

189 one-out approach to determine potential pleiotropy per SNP. The resultant effect was 

190 assessed using the robust penalized IVW estimate. The change in results before and 

191 after SNP removal was then assessed. We also checked for heterogeneity between 

192 instrumental variables determined by Q statistics at P-value � 0.05.

193

194

195
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196 Ethics statement
197 The parent studies; MVP, and MALG obtained participant consent with respective ethical 

198 approvals, and consequently, this work is exempt from seeking further ethics approval.

199

200 Statistical analysis
201 We performed the MR analyses using the two-sample random-effects inverse-variance 

202 weighted (IVW) method implemented in the Mendelian Randomization R package [28]. 

203 This method determines the causal estimates for instruments that meet the instrumental 

204 variable assumptions reported elsewhere [14]. To account for the documented horizontal 

205 pleiotropy between lipids, we conducted a multivariable MR (MVMR) including 

206 instrumental variables from HDL, LDL, and TG at P < 5 x 10-8. We further checked for 

207 reverse causality by conducting an MR analysis considering eGFRcrea from MVP as 

208 exposure and lipid traits from MALG as outcome. The genetic instruments included in this 

209 study for all analyses were selected as those significantly associated with the risk of lipid 

210 traits at p < 5X10-8 in the MALG dataset with clumping at 500kb. We controlled for the 

211 false discovery rate in multiple testing using the  Bonferroni method [29]. Statistical 

212 significance for causal associations was considered at p-value < 0.005. All analyses were 

213 performed using Mendelian Randomization packages in R. 

214

215 Role of funding source
216 Funding sources had no role in the conduct or reporting of the research.

217

218 Results
219 The bi-directional MR analysis was performed as shown in figure1. Further details on the 

220 instrumental variables chosen can be found in supplementary data.

221

222 Association of estimated glomerular filtration rate with lipid levels
223

224 Univariable MR
225
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226 The associations between genetically predicted lipid traits and eGFR are shown in 

227 Table1, figure 2, supplementary figure s2. We found no evidence of a statistically 

228 significant causal association between genetically predicted HDL-C and eGFR (� = -

229 0.164, 95% CI = -1.329-1.00; p = 0.782). The effect estimates (�) [95% confidence 

230 intervals (CIs)] for the other lipid traits on eGFR were 1.1([0.411-1.788]; 0.002), 

231 1.619([0.412-2.826]; 0.009) and -0.934([-2.815-0.947]; 0.33) for LDL, TC, and TG 

232 respectively. There was evidence of a significant causal association between genetically 

233 predicted LDL cholesterol and eGFR. Similarly, TC showed a significant causal effect on 

234 eGFR (Figure 2). Genetically predicted Triglycerides (TG) were not significantly 

235 associated with eGFR as well.

236

237 The reverse MR analysis showed no significant causal association between eGFR and 

238 all four lipid traits, as shown in the supplementary figure S1 & Table S1. For the reverse 

239 MR, the effect estimate ([95% CI]) for HDL, LDL, TC, and TG was 0.01([-0.011-0.012]; 

240 p=0.873), 0.007([-0.005-0.018]; p=0.265), 0.008([-0.005-0.021]; p=0.225) and 0.00([-

241 0.011-0.011]; p=0.984) respectively. eGFR showed no evidence of a reverse causal 

242 effect on this population's genetically predicted lipid traits. 

243

244 Multivariable MR 
245

246 The MVMR analysis showed statistically significant causal associations for genetically 

247 predicted lipid traits; LDL and TG on eGFR (figure 3; supplementary TableS2). LDL 

248 cholesterol had a significant positive causal effect on eGFR, consistent with that observed 

249 in the forward univariable analysis (� = 1.228([0.477-1.979]; p=0.001). There was 

250 evidence of a significant causal effect of genetically predicted TG on eGFR ((� = -1.3([-

251 2.533—0.067]; p=0.039). HDL was not significantly associated with eGFR, just like in 

252 prior analyses. 

253

254 Sensitivity analyses
255

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4249783

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



256 We accounted for the pleiotropic effects between instrumental variables using MR-Egger, 

257 penalized robust MREgger, leave-one-out analysis, simple median, and weighted median 

258 analyses. We found no evidence of horizontal pleiotropy between IVs using the MR-Egger 

259 regression intercept analysis. All associations had p-values > 0.005 for the MR-Egger 

260 intercept, as shown in figure s2. We further estimated any horizontal pleiotropy using the 

261 leave-one-out approach and found no evidence of any confounding due to pleiotropy 

262 between SNPs with all p-value > 0.05 (Table2). 
263

264 Discussion
265 In this African-ancestry MR study, we investigated the causal effect of genetically 

266 predicted lipid traits on eGFRcrea using a two-sample and multivariable MR approach. In 

267 the primary MR-IVW forward analysis, LDL-C and TC showed evidence of a significant 

268 causal association with eGFR. Therefore, we report significant evidence that genetically 

269 predicted lipids; LDL and TC are causally associated with eGFRcrea in this African 

270 population. However, the reverse MR-IVW analysis indicated a non-significant causal 

271 association between eGFRcrea and either of the genetically predicted lipids.

272

273 Our findings in the main analysis on HDL and TC differ from those reported on MR 

274 analyses in European ancestry cohorts by Lanktree et al. and other groups[16, 17, 30].   

275 They reported a significant association between higher HDL levels with higher eGFR. 

276 Here, we report no evidence of association between genetically-proxied HDL cholesterol 

277 and better kidney function in this African cohort.  However, our findings tally with those 

278 from another study based on European ancestry individuals using GLCG and CKDGen 

279 consortium datasets which reported a non-significant effect of HDL on eGFR levels [8]. 

280 Notably, elevated HDL has been shown to lower the mortality rate of CKD within observed 

281 ranges [31]. 

282

283 Our causal association between LDL and eGFR differs with findings from elsewhere [4, 

284 10]. The Chronic Renal Insufficiency Cohort Study reported no association between LDL-

285 C levels and the change rate of eGFR in low proteinuria individuals at baseline [32]. We, 

286 therefore, suggest better powered future studies within the same African ancestry to 
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287 clarify the true association between serum lipids and kidney function as measured by 

288 eGFR in this ancestry.

289

290 The reverse univariable analysis showed no evidence of a significant causal association 

291 between eGFR and lipid traits. Our findings from the reverse association between eGFR 

292 and serum lipids are consistent with findings elsewhere[33].

293

294 In the main univariable analysis, we report that high LDL and TC levels had a strong 

295 significant causal effect on eGFR levels.  In the multivariable MR analysis, low TG levels 

296 had a protective effect on eGFR. Unlike TC, genetically predicted low TG levels showed 

297 a consistent causal effect on eGFR between the MVMR and the main forward univariable 

298 analysis, showing significance in the latter. Findings from other studies have reported a 

299 conflicting association between TG and eGFR, but these have been based on European 

300 ancestry populations [16, 33-35]. Evidence from observational studies supports a greater 

301 triglyceride to HDL cholesterol ratio as associated with a decline in eGFR [20, 36]. These 

302 observational studies are, however, limited by confounding and inability to determine 

303 direction of effect.

304

305 The respective directions of effect from the MVMR analysis were quite similar to those 

306 observed in the forward univariable MR analysis. In this MVMR analysis, both LDL and 

307 TG had protective causal effects on eGFR. The un-expected direction of effect of 

308 genetically predicted LDL and TG on eGFR reported in this study might be due to the low 

309 statistical power in this study. Noteworthy, a recent study reported an inconsistent 

310 evidence between higher atherogenic lipids including LDL-C, TG, and Apo B and weak 

311 increase in eGFR [33]. A higher eGFR association with higher LDL-C and TG has been 

312 previously associated with glomerular hyperfiltration rates that occur in individuals with 

313 cardiometabolic conditions [37].  We couldn’t verify the role of underlying cardiometabolic 

314 conditions towards the observations in this study. We recommend a more powered study 

315 on African-ancestry individuals, accounting for such clinical parameters to further clarify 

316 our findings.

317
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318 Our study strengths were in the use of continental African-derived GWAS summary 

319 statistics (MALG) and assessing a possibility for a reverse causation between eGFR and 

320 serum lipids. We also performed sensitivity analyses including multi-variable MR-Egger 

321 to determine reliability of our instrumental variables as detailed under the methods 

322 section.

323

324

325 Study limitations
326

327 The study was limited by a lack of access to individual-level data as we only had access 

328 to GWAS summary statistics. This meant that the strength of the instruments used 

329 couldn’t be measured directly. Therefore, we couldn’t measure a possible bias caused by 

330 weak instruments. In our case, weak instruments would lead to an estimate of the causal 

331 effect that is biased toward the observational effect estimate. The study was also limited 

332 by power, and we also didn’t correct for sample overlap. We also did not assess for 

333 ancestral differences in the instrumental variables with other ancestries, as suggested by 

334 Graham et al. [38].

335

336 Conclusions
337 This Mendelian Randomization study suggests a causal association between LDL 

338 cholesterol and higher eGFR, but not HDL cholesterol.  We report that genetically 

339 elevated LDL cholesterol levels are associated with developing higher eGFR. Our findings 

340 suggest that the relationship between non-HDL cholesterol and kidney function may be 

341 U-shaped. This may be a reason why LDL is seen to be a poor predictor of renal 

342 function compared to HDL, and as such lowering LDL does not necessarily improve risk 

343 of kidney disease. Therefore, our findings highlight the need for bigger MR studies 

344 focused on African ancestry individuals to accurately determine the association between 

345 serum lipid traits and kidney function measured by eGFRcrea in continental Africans.

346
347
348
349
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385
386 Tables and figures
387
388 Tables
389
390  Table1: Univariable IVW Mendelian Randomization results. LDL-C: low-density lipoprotein cholesterol; HDL-C: 
391 high-density lipoprotein cholesterol; TC: Total Cholesterol; TG: Triglycerides; IVW: Inverse Variance Weighted; SE, 
392 standard error. *statistically significant (p < 0.05)

Exposure Outcome BETA SE 95%CI P-value

HDL eGFR -0.164 0.594 -1.329-1 0.782

LDL eGFR 1.1 0.351 0.411-1.788 0.002*

TC eGFR 1.619 0.616 0.412-2.826 0.009*

TG eGFR -0.934 0.96 -2.815-0.947 0.33

393
394
395 Table2: Leave-one-out sensitivity analyses for all SNPs in the Multivariable MR

SNP MR-Egger intercept SE 95% CI P-value
rs1800588 -0.058 0.084 -0.222-0.107 0.493

rs17111732 -0.038 0.098 -0.229-0.153 0.698

rs116513376 -0.061 0.085 -0.227-0.106 0.476

rs59523416 -0.056 0.084 -0.220-0.108 0.503

rs12740374 -0.028 0.073 -0.171-0.115 0.703

rs143375141 -0.070 0.085 -0.236-0.097 0.413

rs35804417 -0.057 0.084 -0.221-0.107 0.497

rs75143493 -0.073 0.075 -0.220-0.075 0.334

rs73015020 -0.095 0.079 -0.250-0.060 0.229

rs10416720 -0.076 0.089 -0.251-0.099 0.393

rs7412 -0.084 0.095 -0.271-0.102 0.375

rs3810308 -0.107 0.083 -0.270-0.056 0.199

rs326 -0.073 0.088 -0.246-0.100 0.406

rs2070895 -0.054 0.088 -0.227-0.119 0.538
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rs12721054 -0.035 0.069 -0.170-0.101 0.613

rs114139997 -0.054 0.077 -0.204-0.096 0.477

396
397
398
399 Supplementary material
400
401 Supplementary tables
402
403 Table S1: Reverse Mendelian Randomization results. *LDL: low-density lipoprotein cholesterol; HDL: High-density 
404 lipoprotein cholesterol; TC: Total Cholesterol; TG: Triglycerides
405

Exposure Outcome BETA SE 95%CI P

eGFR HDL 0.001 0.006 -0.011-0.012 0.873

eGFR LDL 0.007 0.006 -0.005-0.018 0.265

eGFR TC 0.008 0.007 -0.005-0.21 0.225

eGFR TG 0 0.006 -0.011-0.011 0.984

406
407
408 Table S2: Multivariable Mendelian Randomization results. *LDL: low-density lipoprotein cholesterol; HDL: High-
409 density lipoprotein cholesterol; TG: Triglycerides; SE: standard error; CI: confidence interval
410

Exposure 
Trait

Outcome BETA SE 95%CI P

HDL eGFRcrea -0.117 0.579 -1.252-0.018 0.84

LDL eGFRcrea 1.228 0.383 0.477-1.979 0.001

TG eGFRcrea -1.3 0.629 -2.533-0.067 0.039

411
412
413 Table S3: Heterogeneity Tests. LDL: low-density lipoprotein cholesterol; HDL: High-density lipoprotein cholesterol; 
414 TG: Triglycerides; TC: total cholesterol
415
416

Exposure trait Cochran’s Q I2(%) p-value
HDL 2.3129 56.8 0.1283
LDL 11.5815 22.3 0.2379
TC 9.5642 47.7 0.0886
TG 7.4009 59.5 0.0602

417
418
419
420
421
422
423
424 Figures
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425
426

427
428
429
430 Figure 1: A schematic representation of bi-directional MR analyses: (a) Forward univariable MR; (b) IVs for lipid traits 
431 should not have an association with eGFR; (c) IVs for lipid traits are not related to measured or unmeasured 
432 confounding. HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG, triglycerides; eGFR, estimated 
433 glomerular filtration rate; SNP, single-nucleotide polymorphism; MR, Mendelian Randomization; F/R, 
434 Forward/Reverse; IVs, Instrumental variables.
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438
439
440 Figure2: Forest plot of the beta estimates and their 95% confidence intervals between genetically predicted lipid 
441 traits and eGFR using the IVW univaribale MR method. IVW, inverse-variance weighted; HDL, high-density 
442 lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol, TC: total cholesterol
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463
464 Figure 3: Forest plot showing the beta estimates and 95% confidence intervals of Multivariate MR of lipids vs eGFR 
465 traits. HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol;  TG: Triglycerides
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488 Supplementary figures
489
490

491
492 Figure S1: Forest plot showing the beta estimates and their 95% confidence intervals of reverse MR of eGFRcrea vs 
493 lipid traits. HDL-C: high-density lipoprotein cholesterol; IVW: inverse-variance weighted; LDL-C: low-density 
494 lipoprotein cholesterol; Total C: total cholesterol; TG: Triglycerides
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501 (a)
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506 (b)
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509
510 (c)
511
512
513 Figure S2: Estimated causal effects of lipids on eGFR using univariable MR assessed using different MR methods: 
514 (a) Causal estimates for LDL, (b) Causal estimates for TC (c) causal estimates for TG. LDL-C, low-density lipoprotein; 
515 TG, triglycerides; eGFRcrea, estimated glomerular filtration rate based on creatinine measurements; IVW, inverse 
516 variance-weighted
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